

IDER 2020 Avoided Cost Calculator Update

Avoided Cost of High GWP Gases

May 6, 2020

Joy Morgenstern Gabe Mantegna

+ What are high GWP gases and why do we need a new avoided cost? (15 min)

Discussion/Questions (5 min)

+ Methane leakage methodology (15 min)

- Discussion/Questions (20 min)
- + Break (10 min)

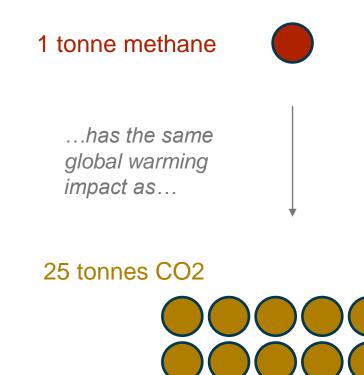
+ Refrigerant leakage methodology (15 min)

Discussion/Questions (20 min)

+ Use cases in the Avoided Cost Calculator (15 min)

Discussion/Questions (20 min)

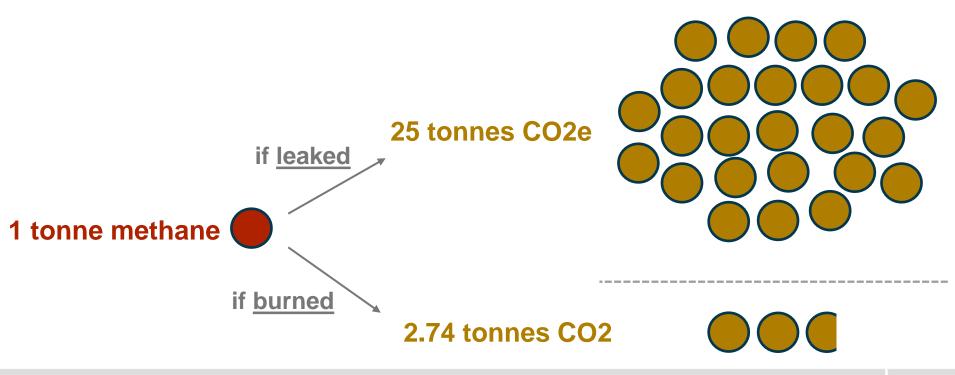
- + Please use the Q&A feature to ask questions.
- + Questions will be answered during the allotted discussion periods after each section.
- If you have a longer question you would prefer to use your microphone for, you can request to be unmuted by clicking on the button with the phone icon:


• Once you are given speaking permissions, you will need to connect your audio by clicking on the phone icon on the main screen:

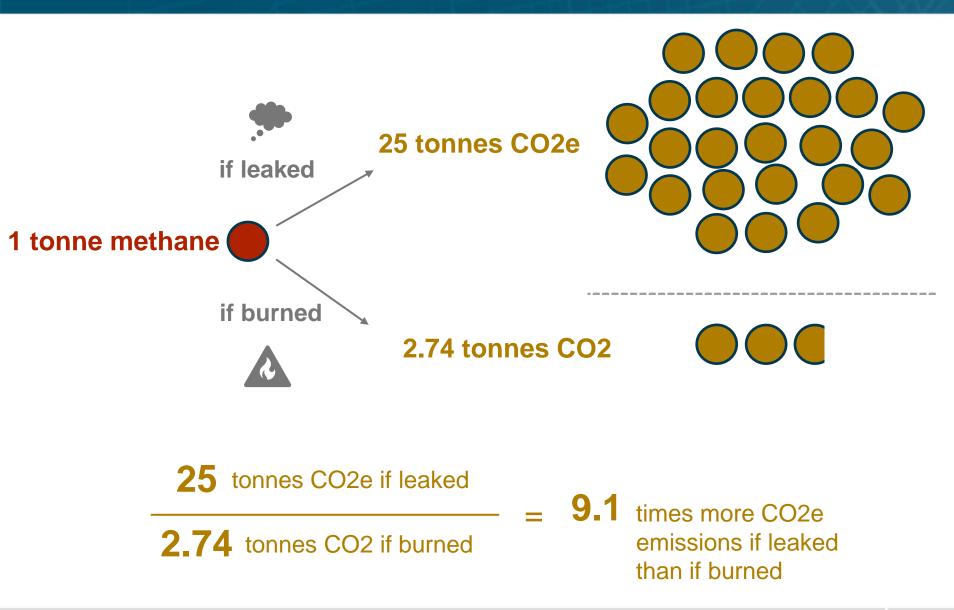
"Methane has a GWP of 25" means...

- GWP stands for Global Warming Potential, which is the potency of a greenhouse gas relative to CO2
- Methane, the primary component of natural gas, is one high GWP gas, with a 100-year GWP of 25
- Refrigerants are also high GWP gases, with typical GWPs around ~2,000

- + The impetus for this new avoided cost is <u>fuel substitution efforts</u>, which could substantially change the amount of high GWP gases that are emitted to the atmosphere
- + Fuel substitution efforts have the potential to change both methane leakage and refrigerant leakage



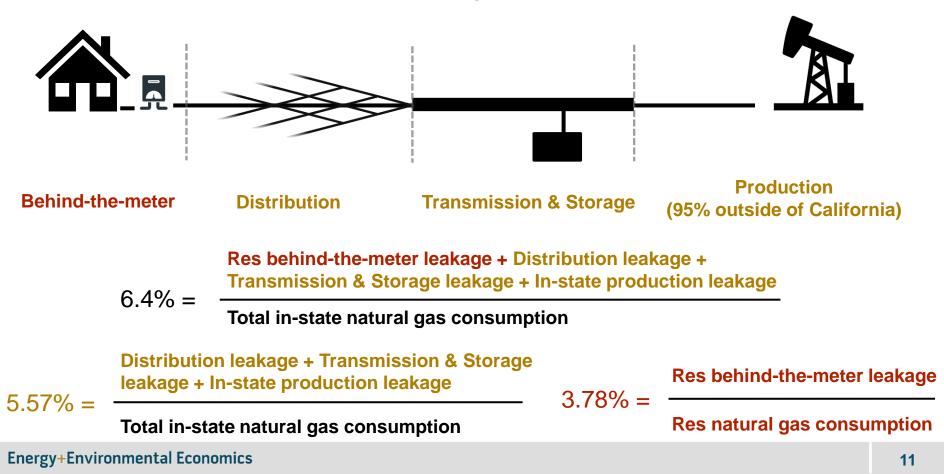
- Methane leaks from the natural gas system significantly increase the lifecycle GHG impact of natural gas
- National average methane leak rate estimated to be at least 2.3% of consumption
- Since Staff Proposal, methane leakage methodology was reviewed in coordination with CARB; have adopted a revised in-state methane leakage rate



Methane leakage Rates and Adders

- Originally proposed in-state leakage rate was 0.7% of consumption
- + 0.7% of methane consumption leaked leads to a 6.4% increase in total CO2-equivalent emissions from natural gas. We refer to this 6.4% as a <u>leakage adder</u>.

And therefore...


0.7% methane leakage rate * 9.1 =

 6.4% increase in total CO2equivalent emissions

+ Since the Staff Proposal, we have coordinated with CARB to refine the 6.4% estimate into two components:

- an upstream methane leakage adder of 5.57%, and
- a residential behind-the-meter leakage adder of 3.78%.

Break

- + Refrigerants are gases that absorb and transfer heat
- They are used in all air conditioners and refrigerators, as well as in heat pumps
- + The most common refrigerants in use today have a GWP of around 2,000

- Including refrigerant leakage in the ACC will allow us to accurately determine the lifecycle emissions savings of fuel substitution measures, and incentivize low-GWP refrigerants
- + The California Air Resources Board has compiled data on average leakage rates for appliances that use refrigerants

Appliance	Typical refrigerant	Refrigerant GWP	Average refrigerant charge	Average annual leakage	Average end-of-life leakage	
Central A/C	R410A	2088	7.5 lbs	5%	80%	
Air-source ducted heat pump	R410A	2088	8.2 lbs	5.3%	80%	
Heat pump water heater	vater R134A 1430		2.4 lbs	1%	95%	

Refrigerant leakage in the ACC

+ Excerpt from ACC refrigerant leakage table:

Sector	Device type	Average lifetime (years)	Average charge size (lbs)	Average annual leak rate	Average end-of- life loss rate of remaining refrigerant	Number of years prior to EOL with no "top-off" refrigerant added to replace full charge	Percentage of refrigerant charge lost during lifetime	Mass of refrigerant lost during lifetime for average unit (lbs)
	Large Chiller 2,000 lbs. +	20	3,978	2.3%	20.0%	0	66%	2,625.5
	Medium Chiller 200-2,000 lbs.	20	526	3.0%	20.0%	0	80%	420.8
	Commercial Unitary AC 50-200 lbs., > 135,000 BTUh size	20	70	7.0%	20.0%	0	160%	112.0
	Commercial Unitary AC, < 50-lbs., < 135,000 BTUh size (includes smaller "residential-type" central AC and heat pumps)	15	18.2	4.7%	56.0%	0	127%	23.0
	Window/Room AC and PTAC Units, commercial	12	1.54	2.0%	98.5%	12	99%	1.5
	Residential Unitary AC	15	7.5	5.0%	80.0%	3	143%	10.7
	Residential Heat Pumps	15	8.2	5.3%	80.0%	3	147%	12.0
	Window/Room/Wall AC and Packaged Terminal AC (PTAC) Units, residential	12	1.54	2.0%	98.5%	12	99%	1.5
	Portable AC	10	1.54	1.0%	98.5%	10	99%	1.5
	Dehumidifiers	5	1.00	1.0%	98.5%	5	99%	1.0

+ Standardized refrigerant GWPs also included in a separate tab

+ Separate refrigerant calculator to be used for cost-effectiveness analyses will be available soon

+ Methane and refrigerant leakage will be incorporated into the avoided cost framework under three "use cases":

- 1. Changes in electricity usage
- 2. Changes in gas usage 7/1
- 3. Changes in refrigerant usage or type
- + The primary adopted High GWP avoided costs use a 100year GWP, but a toggle to use the 20-year GWP is included for sensitivity analysis.

- + This use case will apply to all DERs that result in changes in electricity usage
- + The upstream methane leakage adder of 5.57% is added to the GHG adder, to reflect the additional GHG intensity of natural gas consumption by electric generators when gas is the marginal resource

Total emissions avoided cost (\$/tonne) = GHG adder (\$/tonne) * (100% + 5.57%)

- + This use case will apply to all DERs that result in changes in direct natural gas usage in a building
- Upstream methane leakage adder of 5.57% is applied as an increase in the GHG intensity of all natural gas consumption
- Additional behind-the-meter methane leakage adder of 3.78% for measures that eliminate natural gas appliances from a residential building

Use Case #3: Changes in Refrigerant Usage or Type

- + This use case will apply to all DERs that change the amount or type of refrigerant being used in a building
- Refrigerant leakage is calculated for both the <u>new</u> and <u>replaced</u> appliances, using leakage rates and GWPs from CARB included in the ACC spreadsheet
- + Refrigerant leakage emissions valued at GHG adder \$/tonne

+ Can compare annualized lifecycle emissions of a <u>heat pump water heater</u> and a <u>gas water heater</u>

- Heat pump water heater emissions:
 - Upstream electricity emissions
 - + lifecycle refrigerant leakage emissions / lifetime
 - = 0.2 tonnes upstream electricity emissions

+ (2.4 lbs R134a)*(100% lifetime leakage)*(0.00045 tonnes/lb)*(1430 GWP) / 14-year lifetime

- Total = 0.31 tonnes/yr
- Gas water heater emissions:
 - Gas combustion emissions
 - + avoided methane leakage emissions
 - = 0.7 tonnes gas combustion emissions
 - + 5.57% upstream leakage adder + 3.78% behind-the-meter leakage adder
 - Total = 0.765 tonnes/yr

- Upstream methane leakage adder of 5.57% is included in the ACC as an increase to the GHG intensity of natural gas
- Behind-the-meter leakage adder of 3.78% is additionally added for measures that remove gas appliances from residential buildings
- Refrigerant leakage table is included in the ACC, to be applied for any measure that changes refrigerant amount or type

